在交通领域,公路长途运输、铁路、航空及航运将氢能视为减少碳排放的重要燃料之一。现阶段我国以氢燃料电池客车和重卡为主,数量超过6000辆。在相应配套基础设施方面,我国已累计建成加氢站超过250座,约占全球数量的40%,居世界第一。
目前我国氢能应用占比最大的领域是工业领域。氢能除了具有能源燃料属性外,还是重要的工业原料。氢气可代替焦炭和天然气作为还原剂,可以消除炼铁和炼钢过程中的绝大部分碳排放。利用可再生能源电力电解水制氢,然后合成氨、甲醇等化工产品,有利于化工领域大幅度降碳减排。
建筑领域需要消耗大量的电能和热能,已与交通领域、工业领域并列为我国三大“耗能大户”。利用氢燃料电池纯发电效率仅约为50%,而通过热电联产方式的综合效率可达85%——氢燃料电池在为建筑发电的同时,余热可回收用于供暖和热水。在氢气运输至建筑终端方面,可借助较为完善的家庭天然气管网,以小于20%的比例将氢气掺入天然气,并运输至千家万户。据估计,2050年全球10%的建筑供热和8%的建筑供能将由氢气提供,每年可减排7亿吨二氧化碳。
在电力领域,因可再生能源具有不稳定性,通过电—氢—电的转化方式,氢能可成为一种新型的储能形式。在用电低谷期,利用富余的可再生能源电力电解水制取氢气,并以高压气态、低温液态、有机液态或固态材料等形式储存下来;在用电高峰期,再将储存的氢通过燃料电池或氢气透平装置进行发电,并入公共电网。而氢储能的存储规模更大,存储时间更长,可根据太阳能、风能、水资源等产出差异实现季节性存储。同时,电氢耦合,也将在我国构建现代能源体系中发挥重要作用。
从清洁低碳角度看,大规模电气化是我国多个领域实现降碳的有力抓手,例如交通领域的电动汽车替代燃油汽车,建筑领域的电采暖取代传统锅炉采暖等。然而,仍有部分行业是难以通过直接电气化实现降碳的,最为困难的行业包括钢铁、化工、公路运输、航运和航空等。氢能具有能源燃料和工业原料双重属性,可以在上述难以深度脱碳的领域发挥重要作用。
从安全高效角度看,首先,氢能可以促进更高份额的可再生能源发展;其次,氢能可以进行化学储能和运输,实现能源的时空转移,促进我国能源供应和消费的区域平衡;此外,随着可再生能源电力成本的降低,绿色电能和绿色氢能的经济性将得到提升;氢能与电能作为能源枢纽,更容易耦合热能、冷能、燃料等多种能源,共同建立互联互通的现代能源网络,形成极具韧性的能源供应体系。
作者系华北电力大学校长、教授